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We investigate the dynamics of the coupled nonlinear Schrodinger equations which describe light
propagation in isotropic Kerr media including polarization effects. It is shown that the phenomenon of
polarization modulational instability in the normal-dispersion regime is associated with the existence of
a novel type of dark vector soliton. This soliton constitutes a localized structure separating adjacent
domains of orthogonal polarization eigenstates of the Kerr medium and can be viewed as a polarization

domain wall.

PACS number(s): 42.81.Dp, 42.81.Gs, 03.40.Kf

I. INTRODUCTION

Modulation instability (MI) is a general characteristic
of wave propagation in nonlinear dispersive media and is
of common occurrence in such diverse fields as plasma
physics [1], fluid dynamics [2], and nonlinear optics [3].
It refers to the physical process in which a weak periodic
perturbation of a uniform intense carrier wave grows ex-
ponentially as a result of the interplay between dispersion
and nonlinearity. In the context of optics special atten-
tion has been paid to MI in Kerr media (e.g., optical
fibers) in which light-wave propagation is described, in
the scalar approximation of the electromagnetic field, by
the nonlinear Schrédinger (NLS) equation [4,5]. In this
approximation MI, which results from the interplay be-
tween self-phase-modulation and dispersion, requires
anomalous group-velocity dispersion [6]. This condition
is also necessary for the existence of bright solitons which
result from an exact balance between nonlinearity and
dispersion [4]. Using direct substitution methods,
Akhmediev and co-workers developed an analytical ap-
proach to MI of the NLS equation [7,8]. A general
three-parameter family of first-order solutions to the NLS
equation was given that includes space- and time-
periodic, stationary periodic, and solitary-wave solutions
[8]. In this way, a direct and explicit link between MI
and the fundamental bright NLS soliton was established
for the first time.

When accounting for the polarization of the elec-
tromagpnetic field, light propagation in isotropic Kerr ma-
terial is described by two incoherently coupled NLS
equations [3]. It is known since the early study of
Berkhoer and Zakharov in the context of plasma physics
[9] that incoherent coupling between two NLS equations
leads to an extension of the frequency domain of MI to
the normal dispersion regime. The physical mechanism
behind incoherent coupling is cross-phase-modulation
(XPM), which refers, in this case, to each polarization
component modulating the phase of the other. XPM is a
general phenomenon characteristic of the simultaneous
nonlinear propagation of several waves belonging to
different optical modes [3]. It was shown, in the context
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of fiber optics, that MI with normal dispersion can also
occur through XPM between waves of different frequen-
cies [10]. The author of this latter work foresaw the fun-
damental importance of this phenomenon when he con-
jectured that a soliton must exist that is associated with
MI in the normal-dispersion regime in the same way as
the bright NLS soliton is associated with MI for anoma-
lous dispersion. The aim of this paper is to confirm the
existence of this soliton. Note that throughout the paper
we use the common colloquial term “soliton” for what
should be more rigorously called a stationary solitary
wave. Analogously to what is done in Ref. [8] for the sin-
gle NLS equation, we establish a direct link between
XPM-induced MI in the normal-dispersion regime and
the associated soliton. The incoherently coupled NLS
equation being nonintegrable, most of our developments
are based on numerics, although an approximate analyti-
cal approach to the problem is used as a guide in the
search for new solutions. For the sake of simplicity we
only consider the case of orthogonally polarized waves
propagating in isotropic Kerr media. Our results, howev-
er, are relevant to other physical situations involving
XPM between two optical modes.

The soliton associated with polarization modulational
instability (PMI) in the normal-dispersion regime consists
of a bound pair of solitary waves of orthogonal polariza-
tion and is, in this case, analogous to the so-called vector
solitons or solitary waves recently reported in the litera-
ture. The idea that nonlinear coupling between optical
modes could lead to the formation of a bound pair of soli-
tary waves belonging to two different modes was first
considered by Christodoulides and Joseph [11] and in-
dependently by Tratnik and Sipe [12]. These authors
showed that stationary bound states of two orthogonally
polarized bright solitons can propagate in birefringent
Kerr materials in the anomalous dispersion regime. This
type of solution to the coupled NLS equations was later
analyzed in terms of bifurcations of polarized bright soli-
tons [13,14] and their stability was investigated [15]. We
have shown in a recent work that in fact linear
birefringence is not necessary for such bound soliton
states to exist [16,17]. Considering normal dispersion,
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Christodoulides verified that the coupling of bright and
dark NLS solutions may also result from the interplay be-
tween linear birefringence and XPM [18]. Coupled
bright and dark NLS solitons were also predicted in the
anomalous dispersion regime [18] but are inherently un-
stable [19]. Trillo et al., showed that, using two waves of
different wavelength situated below and above the zero-
dispersion value, XPM can sustain propagation of a
bright NLS soliton in the normal dispersion coupled to a
dark NLS soliton in the anomalous dispersion [20]. This
type of pairing of bright and dark solitons was later ana-
lyzed in more detail [21]. More recently, considering
highly birefringent fibers in the anomalous dispersion,
Tratnik found a new type of solitary waves that mix two
polarization states but whose global behavior is governed
by the scalar NLS equation [22]. Finally, Kivshar and
Turitsyn showed the possibility of propagating bound
states of gray solitons in the normal-dispersion regime
[23]. To our knowledge this latter work and that of Ref.
[18] constitute the only studies of vector bound solitary
waves in the normal-dispersion regime. The existence of
these vector solitary waves cannot be directly related to
polarization modulational instability in the normal
dispersion (contrary to what is suggested in Ref. [18]) and
are therefore, in essence, fundamentally different from
the vector soliton studied here.

The paper is organized as follows. In Sec. II we briefly
recall the theory of polarized modulational instability in
order -to clearly establish the frame of our analysis. In
Sec. III we develop an approximate model for the
description of PMI and the periodic solutions of the cou-
pled NLS equation. This model is based on the Fourier-
mode truncation method used by Infeld for the study of
Fermi-Pasta-Ulam recurrence in the NLS equation [24].
It provides a good and simple qualitative picture of the
dynamics of the coupled NLS equations which allows us
to establish a link between PMI and the existence of sta-
tionary periodic solutions to these equations. These solu-
tions are equivalent to the so-called cnoidal waves 8] of
the scalar NLS equation. Section IV is devoted to the nu-
merical study of these stationary periodic solutions. We
show that, like the scalar NLS cnoidal waves, these func-
tions tend to a solitary-wave solution as their period
tends to infinity. This solitary wave constitutes the soli-
ton associated with PMI in the normal-dispersion regime.
A detailed analysis of the soliton is given in Sec. V. Sec-
tion VI is devoted to our conclusions.

II. POLARIZATION MODULATIONAL
INSTABILITY

We consider one-dimensional propagation of polarized
light in an isotropic dispersive Kerr material (e.g., a cir-
cular single-mode fiber). In dimensionless units the evo-
lution of the circular polarization components is ruled by
the incoherently coupled NLS equations [3]

OE, o JE,
! oz 2 92
+1[(1=B)E *+(1+B)E_[*]E, =0, (la)

QE_ 4 IE_
9z 2 92
+L[(1=B)E_|*+(1+B)|E,[*JE_=0, (1b)

where E, and E _ are the amplitudes of the counterro-
tating polarization components, z is the coordinate along
the propagation axis, ¢ is the time in the Gallilean refer-
ence frame traveling at the group velocity of the waves, o
is the sign of dispersion, 0 =+1 (0= —1) represents nor-
mal (anomalous) dispersion, and the coefficient
B =yx3),/x\}1, where x3}; is the nonlinear susceptibility
tensor of the material [25]. Note finally that Egs. (1) can
be applied to the spatial domain by simply replacing the
time ¢ by the transverse coordinate of a two-dimensional
diffractive Kerr cell. In that case Egs. (1) describe the
propagation of a laser beam in a self-focusing, o =—1, or
self-defocusing, o = + 1, Kerr medium.

Since the pioneering work of Berkhoer and Zakharov
[9], MI of Egs. (1) and generalized forms has been exten-
sively studied in the literature (see, e.g., Refs. [3,10,26]).
For the sake of clarity, we only give here the main steps
of the developments of the linear stability analysis for the
problem of interest to us, namely, the stability of a linear-
ly polarized continuous wave (cw). The linearly polarized
cw solution to Egs. (1) reads E, =E _ =Eexp(i|E,|*2).
The stability of this solution against the growth of
periodic perturbation is examined by introducing in
Egs. (1) the ansatz E, =(E,+e )exp(i|Ey|*z), where
e, is a first-order perturbation of the form e,
=g exp(Az)cos(Qt). Linearizing with respect to €.
leads to a characteristic polynomial of the fourth degree
in . Among the corresponding four eigenvalues A; only
two are potentially unstable. They are

r=0QV —oP,—Q%/4, (2a)

=0V 0BP,—Q0%/4 , (2b)

where P, is the normalized power of the initial cw polar-
ization components P,=|E,|%. The first eigenvalue A,
corresponds to MI in the anomalous dispersion regime,
o= —1. The gain maximum A,,, =P is obtained at the
frequency Q,,, =(—20P,)!/%. Note that this instability
is independent of the coefficient B, i.e., it does not involve
the tensor character of the Kerr nonlinearity. Moreover,
the eigenvector associated with A, at the optimal frequen-
cy Q,,, has the form

v, =(Re(ey ), Im(e; ), Re(e_),Im(e_));—, =(1,1,1,1),

which shows that, under the effect of the instability, both
polarization components exhibit the same evolution. In
other words, as is well known, MI of the coupled NLS
equations in the anomalous dispersion regime does not
involve any changes in the linear polarization state of the
field and does not differ from MI in the scalar NLS equa-
tion. The theory of Ref. [8] can then be applied and, nat-
urally, the soliton associated with this instability is the
usual bright NLS soliton which represents here a pulse of
constant and uniform linear polarization.

The situation is fundamentally different for the insta-
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bility governed by the second eigenvalue A,. We see from
Eq. (2b) that, contrary to MI of the scalar NLS equation,
this instability only occurs in the normal dispersion,
o=+1. Its maximum gain is A, ,,=BP,, which corre-
sponds to the optimal frequency Q,,, =(20BP,)!/2. The
role of the coefficient B shows that MI, in this case, de-
pends intrinsically on the tensor character of the Kerr
nonlinearity. The smaller B, the smaller the MI gain and
its optimal frequency. The instability disappears in the
absence of nonlinear birefringence, i.e., when B =0 (e.g.,
for an electrostriction-induced Kerr nonlinearity).
Another important difference with respect to the scalar
MI is revealed by the analysis of the eigenvector associat-
ed with A,. At the optimal frequency (2,,, this eigenvec-
tor has the form

v;=(Re(e,),Im(e ), Re(e_),Im(e_));—;,
=(1,1,—1,—1,).

This indicates that MI induces the exponential growth of
periodic perturbations of opposite sign in the two circular
polarization components of the initial linearly polarized
cw signal. As a consequence, one may expect that, up to
the nonlinear stage of the evolution of MI, the envelopes
of the two circularly polarized fields exhibit two identical
but 7 out-of-phase periodic structures. Since this insta-
bility involves a change of the state of polarization of the
field, it is called polarization modulation instability. An
illustration of PMI is given in Fig. 1, which shows the
evolution of the intensity profiles of the two components
E . and E _ obtained by numerical simulation of Egs. (1)
for B =1. The initial conditions correspond to a linearly
polarized cw field slightly perturbed by a periodic signal
at the optimal frequency, E.(z =0,¢)=1xecos(Q,,,?),
where e=10"3. Periodic boundary conditions are con-
sidered. As predicted from the linear stability analysis,
we verify in Fig. 1 the formation of two 7 out-of-phase
identical periodic structures in both polarization com-
ponents. Note that this result is general and does not de-
pend on the type of initial perturbations. For instance,
when seeding PMI with a white noise, the spectral com-
ponents of the noise at the optimal frequency are selected
in both polarizations and, in agreement with the form of
the eigenvector v,, they grow with a phase of 7/4 and
5 /4 with respect to the initial cw signal, giving rise to 7
phase-shifted temporal structures.

Let us note finally that the linear stability analysis ap-
plied to continuous waves of pure circular polarization
shows that such waves obey the dynamics of the scalar
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NLS equation and, in particular, are modulationally
stable in the normal-dispersion regime.

III. TRUNCATED THREE-WAVE MODEL

For the scalar NLS equation a link between the bright
soliton and MI was established thanks to the discovery of
an analytical three-parameter family of first-order solu-
tions that includes space- and time-periodic, stationary
periodic, and solitary-wave solutions [8]. The link be-
tween MI and the bright NLS soliton can be viewed as
follows. The dynamics of MI is described by the space-
and time-periodic solutions of the family in a given range
of the parameters. Varying the family parameters shows
that stationary periodic solutions constitute limiting
states of these complex solutions. Since the stationary
periodic solutions have the form of the elliptic cosine
function cn, they have been called cnoidal waves. As is
well known, when increasing the period, say, T, of the el-
liptic cosine, this function tends to a periodic train of
pulses whose envelope tends to the hyperbolic secant
function. In such a way that, in the limit 7 = «, the el-
liptic cosine becomes the hyperbolic secant function [27]
corresponding to the bright NLS soliton.

Ideally, in order to find the soliton associated with
PMI we should look for a similar general family of solu-
tions of the coupled NLS equation (1). Seeing the com-
plexity of these equations as compared to the single NLS
equation, this task appears rather difficult [e.g., contrary
to the scalar NLS equation, Egs. (1) are not integrable for
B0 [14,28]]. Even a numerical approach to the prob-
lem, similar to the one originally applied to the NLS
equation [7,29], would be difficult to develop without fur-
ther information on the dynamical features of Egs. (1).
This is the reason why we propose here an approximate
model for the dynamics of PMI in Egs. (1). This model
provides a simple qualitative picture of the dynamics of
periodic solutions of the coupled NLS equations. In par-
ticular it reveals the existence of space- and time-periodic
solutions as well as stationary periodic solutions. The
predictions of this model are used in Sec. IV as a guide in
the search for the exact stationary periodic solutions to
Egs. (1) by means of numerics.

Since the early work of Infeld on the theory of the
Fermi-Pasta-Ulam recurrence in the NLS equation [24],
it is known that much physical insight into the complex
dynamics of MI can be obtained by means of the Galer-
kin approximation. For the NLS equation this approxi-
mation leads to a three-wave truncated model which

FIG. 1. Evolution of the intensity profiles of
the two polarization components E 1 (z,t) of a
initially linearly polarized cw field slightly per-

turbed by a periodic perturbation at
the optimal frequency: E4(z=0,7)=1
+10 3cos(Qy,n ) where for =1

Q,, =0.816, i.e., T=7.7. We clearly verify

the formation of two identical but out-of-phase
periodic structures in both circular polariza-
tion.
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reduces the complexity of the dynamics to that of the
conservation motion of a particle in a one-dimensional
potential [30-32]. Three-wave truncated models were
also proven to be efficient in the study of MI in nonlinear
optical cavities described by driven and damped NLS
equations [33-35]. The three-wave truncation approach
to the problem of modulational instability in coupled
NLS equations was first proposed in Ref. [36] for the
study of nonlinear modulation of coupled waves in
birefringent optical fibers. We show in the following that
this approach is suitable to the study of the periodic solu-
tions of Egs. (1).

The stability analysis of Sec. II and more particularly
the form of the eigenvector v,, as well as the results of
the numerical simulations illustrated in Fig. 1, suggest
that it should be possible to describe PMI of Egs. (1) by
means of a three-mode Fourier truncation of the form

E(z,)=Ey(2)*V2E,(z)cos(Qt) , 3)

where Q is the frequency of the temporal patterns. Natu-
rally this truncation is only valid as long as higher har-
monics do not significantly influence the system dynamics
[24,30]. In order to ensure that higher harmonics are not
linearly unstable we impose the condition Q>(./2,
where, according to Eq. (2b), Q,=2(BP,)!/? is the total
PMI gain bandwidth or the PMI cutoff frequency (we set
o =+1 in the remaining of the paper). Note that in Eq.
(3) we assume equal amplitudes for the two sideband
waves [or Fourier components exp(i{¢) and exp(—iQ¢)].
In the following, we call E, and E, the amplitudes of the
pump and the sideband waves, respectively. With the no-
tation of Eq. (3) the power carried by each polarization
component is given by P =|E,|*+|E,|%. It is important
to note that the ansatz (3) is consistent with Egs. (1) in
the sense that the substitution of £, and E_ as given by
Eq. (3) into Eq. (1a) (when neglecting all higher harmon-
ics) leads to the same set of ordinary differential equa-
tions as the substitution of £, and E_ into Eq. (Ib).
This set is written as

dE,
! dz
E,
dz

+|E,|*E,+(1—B)|E,|’E,—BE3E} =0, (4a)

i

+1Q%E,+(1—B)|E,|*E, +3|E,|’E, —BE}E}=0.

(4b)

Consequently, although the original model consists of
two coupled NLS equations, the truncated model has a
form analogous to that derived for the single NLS equa-
tion [24,30-32]. This result is important because it
means that PMI can be described in terms of the dynam-
ics of only two coupled Fourier modes. Moreover, it is
easy to see from Egs. (4) that the total power
P=|Ey|*+|E,|* is a conserved quantity and that the
power flow between the pump and sidebands only de-
pends on their relative phase. Introducing the powers P,
and P, and the phases ¢, and ¢, of the pump and side-
band waves through the relations E,=(P,)! %exp(i¢,)
and E,=(P,)"%exp(i$,), we can then reduce the model
to a set of two differential equations of the real variables

P and $=¢;—¢;.

dp,
——=2B(P —P,)P;sin(2¢) , (5a)
dz

9& = — 102+ BP ~ 2B+ )P, +B (P 2P, )os(24) .

(5b)

These two self-consistent coupled real equations describe
the physical content of the approximate model Egs. (4)
[i.., the only information lost when deriving Egs. (5) is
the absolute phase of the field]. In order to investigate
the existence of eigensolutions (or fixed points) and the
dynamics of Egs. (5), it is convenient to formulate the
problem as a Hamiltonian system [36]. Introducing the
normalized sideband power n=P, /P, it is easy to see
from Egs. (5) that the variables 1 and ¢ are conjugate
through the Hamiltonian

H=(k—Bn+B(n—1)ncos(2¢)+(B +1m*, (6)

where k=02 /(2P), and thus obey the equations

dn_OH d¢__OH o
d¢ 3¢’ d& oy’

where we introduced the scaled longitudinal coordinate
{=zP. The dynamical features of PMI and, more gen-
erally, of the periodic solutions of the coupled NLS equa-
tions are qualitatively described by this simple one-
dimensional Hamiltonian model. This model is remark-
ably similar to that derived in Refs. [30,31] for the study
of MI and three-wave mixing in Kerr media in the scalar
approximation. For a given Kerr material, i.e., for a
given value of B, the Hamiltonian (6) has one degree of
freedom determined by the parameter . In the following
we consider the value B =1, which corresponds to the
nonlinearity of optical silica fibers.

Following the ideology of Refs. [30-32,36], it proves
convenient to characterize the dynamics by means of a
phase-space representation. We consider the phase space
of polar coordinates (7,4) in such a way that the side-
band power 7 and the relative phase ¢ are simply
represented by the modulus and angle of the phase point,
respectively. The origin of this plane represents therefore
a linearly polarized continuous wave [i.e., E; =0 in Eq.
(3)]. The trajectories of Egs. (6) and (7) are the contour
lines of H in the phase space. They are plotted in Fig. 2
for the particular case of the optimal PMI frequency, i.e.,
k=Q3, /(2P)=B [note that in Egs. (2) the continuous-
wave power P, is equal to the total power P since the
sideband amplitude is assumed to be arbitrarily small in
the stability analysis]. A simple glance at Fig. 2 allows us
to see that the dynamical behavior of PMI is similar to
that of MI in the scalar NLS equation, in particular, the
instability of the cw signal (represented by the origin in
the plane) corresponds to the presence of a hyperbolic un-
stable fixed point of the Hamiltonian system [36]. In oth-
er words, the system exhibits a homoclinic orbit charac-
teristic of the Fermi-Pasta-Ulam recurrence in the NLS
equation [24,30-32]. This orbit is a separatrix that
divides the phase plane into two domains. The orbits of
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FIG. 2. Phase-space portrait of the dynamics of the space-
and time-periodic solutions given by the approximate truncated
Hamiltonian model for the optimal PMI frequency (i.e., k=B).
The orbits are the contour lines of the Hamiltonian H in polar
coordinates (1,¢). We verify the existence of the homoclinic or-
bit corresponding to PMI of the linearly polarized cw signal.
The arrows indicate the stable and unstable directions of the

origin as obtained from the linear stability analysis of Sec. II.

these domains represent the two types of space- and
time-periodic solutions of the coupled NLS equations (1)
around the optimal frequency of PMI. Note that, in ac-
cordance with the ansatz (3), if a point (7,¢) running on
an orbit represents the periodic evolution of one circular
polarization component, say, E., then the point
(17,¢+ ) running on the corresponding symmetric orbit
represents the evolution of the component E_. The ar-
rows on the separatrix orbit indicate the unstable direc-
tions of the origin (cw solution). The angles ¢ =7 /4 and
51 /4 correspond naturally to the expression of the eigen-
vector v, obtained from the linear stability analysis.

We checked the validity of the truncated Hamiltonian
model (6) and (7) by comparing its predictions with the
results of direct numerical integration of the coupled
NLS equations (1). For the sake of simplicity we set the
total power P to unity in such a way that {=z and the
comparison between both models is straightforward. Fig-
ure 3 shows the evolution in z of the intensity in # =0 of

IE, |2

0 40 80 7

FIG. 3. Illustration of the Fermi-Pasta-Ulam recurrence as-
sociated with PMI. The solid lines show the evolution of the
maximum and minimum, |E 4 (z,t =0)|?, of the intensity profiles
of the polarization components given in Eq. (8). The initial con-
ditions are E4(z=0,t)=1xecos(Qt), where £é=10"2 and
Q=1. This evolution corresponds then to the inner orbits of
the phase-space portrait which cross the axis 7sing=0 at
n==€?/2=10.5X10"* The dotted curves show the result of
direct numerical integration of Eqgs. (1) (with B = 1) with identi-
cal initial conditions. We verify a good qualitative agreement
between both models.

both polarization components in the case of a continuous
wave slightly perturbed by an amplitude modulation, i.e.,
with the initial conditions E.(z =0,¢)=1%e cos({t),
where e=1072, and Q=1 (k=0.5). The initial phase ¢
is then zero, which means that the evolution is described
by an orbit inside the homoclinic separatrix. The solid
curves in Fig. 3 give the intensities |E(x,t =0)|? ob-
tained from the Hamiltonian model. Using the ansatz (3)
and expressing it in terms of 7 and ¢ [whose evolution is
given by Egs. (7)], we find

|E(z,t =0)>*=1+17(z)

+2V2[1—n(z)]n(z)cos[(z)] . (8)

The dotted curves are the result of numerical integration
of Egs. (1). We verify the validity of the predictions of
the truncated model. In particular we observe that Egs.
(1) exhibit a recurrent behavior analogous to that of the
scalar NLS equation. Figure 4 illustrates the recurrence
for the two types of orbits shown in Fig. 2. It shows the
evolution of the intensity profiles of both polarization
components obtained by numerical integration of Egs.
(1). Figure 4(a) corresponds to the parameters of Fig. 3,
whereas Fig. 4(b) corresponds to an outer orbit obtained
with an initial phase ¢(z =0)=1/2, i.e., the initial condi-
tions are E.(z=0,t)=1tiecos(Qz) (with the same
values of € and ) as above). A good qualitative agree-
ment between Egs. (1) and the truncated model has been
observed as long as the frequency Q is higher than half
the PMI cutoff frequency, >, /2. Let us note that the
similarity with the scalar NLS dynamics is only qualita-
tive. In fact, due to the coupling between the two out-of-
phase periodic waves, the field envelopes contain less har-
monics than in the case of a single nonlinear wave, and
the truncated three-wave model is more accurate for Egs.
(1) than for the scalar NLS equation. For instance, at the
optimal frequency of MI, the energy content of the
higher harmonics is of the order of 30% of the total field
energy in the case of the NLS equation [24] while in the
present case the discrepancy is only of a few percent (see
Fig. 3).

The Hamiltonian formulation of the problem as given
by Egs. (6) and (7) reveals an important feature of the
coupled NLS equations, namely, the existence of elliptic
fixed points corresponding to steady-state solutions of
these equations. These fixed points appear in Fig. 2 as
the limiting states of the inner orbits for low values of H.
They can be easily calculated from Egs. (6) and (7). We
find

4B —2«k
Ne= g1’ ¢,=0,7 . 9)
Naturally, the two values of the phase, $=0 and m, corre-
spond each to circular polarization components of oppo-
site handedness. The stationary periodic solutions thus
consist of the superposition of two 7 out-of-phase period-
ic structures of counter-rotating polarizations. From
Egs. (4), (5), and (7) it is easy to see that the fixed-point
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solutions E | and E _ have the form

E.=[V1—n,£V 2n,cos(Qt)]V' P exp(iBz) , (10)

where B=P(1—2B7,) is the propagation constant of the
stationary periodic solution. The calculations of the abso-
lute phase [exp(iBz)] of these solutions is necessary for
the comparison with the exact stationary periodic solu-
tions of Egs. (1), which will be studied in Sec. IV. Note
that the 7 out-of-phase envelopes of E , and E _ exhibit
no phase variation, i.e., they are described by real func-
tions. Figure 5 shows the envelopes |E | and |E_| of
the stationary periodic solution Eq. (10) corresponding to
the elliptic fixed points of Fig. 2 (i.e., k=B =1).

These stationary periodic solutions, which appear as
limiting states of the more general space- and time-
periodic solutions, are equivalent to the cnoidal waves of
the NLS equation. The NLS cnoidal waves can be calcu-
lated analytically and may be expressed in terms of Jaco-
bian elliptic functions [8]. This closed analytical form al-
lowed the authors of Ref. [8] to establish an explicit link
between MI and the bright NLS soliton, since, on the one
hand, the cnoidal waves appear as limiting states of
space- and time-periodic solutions, and on the other hand
they tend to the one-soliton solution as their period is in-
creased to infinity. For the coupled NLS equations (1)
the situation is more difficult because no analytical solu-
tions are known to exist. Moreover, the approximate
model derived above only provides a good qualitative
description of the periodic solutions of the coupled NLS
equations in a limited frequency range. Ideally, in order

\
X
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FIG. 4. Evolution of the intensity profiles of
the two polarization components obtained by
numerical integration of Egs. (1). (a) The ini-
tial conditions are those of Fig. 3, i.e., it corre-
sponds to an inner orbit of the phase-space
portrait. (b) The initial condition is
Ei(z=0,t)=1%iX 10" %cos(¢), which corre-
sponds to an outer orbit. We observe in this
case the regular alternation between 7 out-of-
phase periodic patterns predicted by the Ham-
iltonian model.

to find the soliton associated with PMI we should look
for the limiting states of the stationary periodic solutions
as their period tends to infinity, or their frequency ()
tends to zero. Clearly, this cannot be done with the trun-
cated model since a decrease of the frequency would lead
to the appearance of an arbitrarily large number of
higher harmonics. We then have to study numerically
the stationary periodic solutions of Egs. (1). This is the
purpose of the next section. As we shall see, the informa-
tion brought by the truncated Hamiltonian model greatly
simplify this task.

In summary, in this section devoted to the approximat-

0 . S
0 5

10 t

FIG. 5. Solid lines: envelopes |E(z,t)| of the stationary
periodic solutions given in Eq. (10) for the optimal frequency
Q,,, and B =1; the period is then T =27/Q,, =7.7. Dotted
lines: stationary periodic solutions of the same frequency ob-
tained by numerical integration of Egs. (12) with the value of
the propagation constant given by the truncated model, that is,

B=0.88. The shooting parameters are u(0)=ap,x=1.48 and
v(0)=a;,=0.28.
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ed three-wave model we have shown that, in the Hamil-
tonian representation, PMI corresponds to the existence
of a hyperbolic fixed point which is itself associated with
two elliptic points representing stationary periodic solu-
tions of the coupled NLS equations. The limit in which
the period of these solutions tends to infinity will then
provide the soliton associated with PMI.

IV. STATIONARY PERIODIC SOLUTIONS

We now consider the exact stationary periodic solu-
tions of the coupled NLS equations (1). These equations,
being in general (i.e., for B#*—1, B#0, and B ) nonin-
tegrable [14,28], their solutions must be calculated nu-
merically. The approximate model derived in Sec. III re-
veals that the stationary periodic solutions can be de-
scribed as the superposition of two 7 out-of-phase period-
ic envelopes of counter-rotating circular polarizations. It
also shows that, in a limited frequency range, these en-
velopes are well approximated by in-phase (¢=0) or 7
out-of-phase (¢==) pump and sideband Fourier modes
[see Eq. (10)]. This result is very important because it
suggests that the envelopes of the stationary periodic
solutions can be expressed in terms of real functions.
Adopting this assumption, these solutions would then
have the form [see Eq. (10)]

E, =u(t)exp(iBfz), E_=v(t)explifz), (11)

where the functions # and v and the propagation constant
B are real quantities. Substituting Egs. (11) into Egs. (1)
leads to a set of two coupled ordinary differential equa-
tions

uw'==2Bu+(1—Bu3+(1+Bwu ,
v"'==2Bv+(1—BWw3+(1+Bu% ,

(12a)
(12b)

where the primes denote time derivatives. From the
truncated model we know that u and v are out-of-phase
periodic functions. The maxima of wave u correspond
then to the minima of wave v and vice versa. Choosing
the time origin at one of these extrema, we can write
u'(0)=v'(0)=0 and u (0)=a,,, v(0)=ay,,, where a_,,
and a_;, are the extrema of both waves. The stationary
periodic solutions to Egs. (1) can therefore be calculated
by a standard shooting technique using a,, and a_;, as
shooting parameters. These parameters provide the ini-
tial conditions for the numerical integration of Egs. (12).
We only look for the values of a,,, and a;, which lead
to a periodic evolution of u and v. The dotted lines in
Fig. 5 show the solution obtained from this technique for
the optimal frequency ,,, and the corresponding value
of the propagation constant 8=0.88 predicted by the
truncated model [see Eq. (10) with B =1 and P =1]. The
shooting parameters are a.,, =1.48 and a_;, =0.28. As
is expected for any frequency in the range 1, /2<Q<Q,,
we verify an excellent agreement with the truncated mod-
el.

This result proves the existence of stationary periodic
solutions of the form predicted by the simplified Hamil-
tonian model, that is, solutions composed of two =
phase-shifted periodic and real envelopes in both circular

polarization components. We now consider this type of
solutions in the low-frequency domain which is incompa-
tible with the Fourier-mode truncation approach.

To understand the existence and the features of the sta-
tionary periodic solutions, it is convenient to analyze Egs.
(12) in terms of a mechanical analog. Equations (12) are,
in fact, the equation of motion in the plane (u,v) of a unit
mass in the potential

V=Blu?+v))— Hul+o2P+ S w0 ()

This potential possesses maxima and saddle points which
correspond to fixed points of Egs. (12). These fixed points
represent naturally the steady-state cw solutions to Egs.
(1). The polarization states of these cw solutions consti-
tute the polarization eigenstates (or eigenpolarizations) of
the Kerr material [25]. Setting 4" =0 and v"'=0 in Egs.
(12), these solutions can be easily calculated. We find
four maxima on the u and v axis,

(u=1V2B/(1—B),v=0)
and (14)
(u=0,=1V2B/(1—B)),

which represent the circular eigenpolarizations. Between
the maxima there are four saddle points located on the
bisecting lines of the plane (u,v) which represent the
linear eigenpolarizations: u =+v=pB!? and u=xtv
=—pB'2, Note that Eqs. (12) can be normalized with
respect to the parameter 8 by means of a simple change
of variables (t—t /B2, u—upB'?, v—vB'/?). For the
sake of simplicity and without loss of generality we can
therefore set B=1 for the study of the stationary periodic
solutions.

The stationary periodic solutions studied above corre-
spond in fact to the trajectories of the unit mass oscillat-
ing around a saddle point between two adjacent maxima.
This is illustrated in Fig. 6 in which we plot the trajec-
tories in the plane (u,v) of four stationary periodic solu-
tions of different periods for B =1 [the contour lines of
the potential V(u,v) are included in the plots]. They
were obtained from the shooting method mentioned
above. For values of the ratio a,, /a;, close to unity,
i.e., for trajectories which lie in a small region around the
saddle point, the frequency Q of the oscillation is high.
Whereas the trajectories obtained with large values of
@ max /8 min correspond to oscillations of low frequency.
For very large periods, T =2/}, these trajectories span
an angle of almost 90° in the first quadrant of the plane
(u,v) and their extremities approach the maxima of the
potential V.

Figure 7 shows examples of stationary periodic solu-
tions corresponding to such trajectories at different fre-
quencies. As the periodic increases, the amplitude a,,
increases while a,;, decreases, and the envelopes u(f)
and v (z) flatten around these extrema, indicating the ap-
pearance of higher harmonics in the solutions. In Fig. 8
we plot the modulation depth, A=(a ., —@min )/ max> of
the envelopes as a function of their period T =27 /().
We see that A tends to unity as the period tends to
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FIG. 6. Periodic trajectories in the plane (u,v) of the unit
mass in the potential ¥ obtained by numerical integration of
Egs. (11) with B =% and B=1. The shooting parameters are (a)
Qmax=1.17, a4, =0.82; (b) @, =143, a,,=0.52; (c)
Aoy = 1.62, @i =0.23; (d) apa =1.73, ap, =0.03, which cor-
respond, respectively, to the periods T,,=5.6, T, =6.2,
T.=1.8,Tg4=13.

infinity. Note that under the threshold period T, =5.44
no periodic solutions are found. The existence of this
threshold can be forseen from the linear stability analysis
and the Hamiltonian model developed above. When the
frequency 1 tends to the PMI cutoff frequency
Q.=2(BP;)'"? of the PMI gain given in Eq. (2b), the
homoclinic orbit of the Hamiltonian (6) becomes arbi-
trarily small and vanishes when Q=€ ,. Naturally, the

0 5 10t 0 5 10t

FIG. 7. Envelopes |E (z,t)| of the stationary periodic solu-
tions obtained by numerical integration of Egs. (11) with =§
and B=1. The shooting parameters are (a) a@p,,=1.43,
Anin=0.52; (b) amax=1.62, a,;,=0.23; (c) ap.x=1.69,
Qin=0.09; (d) @, =1.73, ani, =0.03, which correspond, re-
spectively, to the periods T(,)=6.2, Ty, =7.8, T =11,
T =13.

A
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FIG. 8. Modulation depth A of the stationary periodic solu-
tions as a function of their period 7. A period threshold T, is
observed under which the stationary periodic solutions no
longer exist. From the linear stability analysis we find
T.=27/Q. which, for B=1 and f=1 considered here, gives

3
T,=5.44.

corresponding fixed points given in Eq. (9) (with k—2B)
tend to the origin or, in other words, the stationary
periodic solutions tend to a stable cw solution and A—0.
It is easy to verify that the threshold periodic corre-
sponds, in agreement with this reasoning, to the cutoff
frequency, that is, T, =27/Q.. In fact, with the choice
B=1, the power P, of the cw solution (saddle point of V)
is unity, so that, T.=/(B)'/? which, in the case B =1
gives T, =5.44 in agreement with Fig. 8.

Figure 7 shows that in the other limit, at very low fre-
quency, the stationary periodic solutions consist of an al-
ternation between quasi-cw domains of counter-rotating
circular polarizations. Each domain is separated from
one another by a localized structure in which the polar-
ization switches from one circular state to the other. As
the frequency Q) tends to zero, or in other words when
the distance, T =2mw /), between these localized struc-
tures becomes infinite, the envelopes u,v take the form of
two symmetric semi-infinite kink waves. The localized
structure they form appears then as a solitary wave exact-
ly as the NLS soliton constitutes the limiting state of the
cnoidal waves. Consequently, we can interpret the local-
ized structure of this limit as being the soliton associated
with PMI in the coupled NLS equations. The next sec-
tion is devoted to a detailed analysis of these new funda-
mental solutions to Egs. (1).

V. SOLITON ASSOCIATED WITH PMI

The solitary-wave solutions of Egs. (1) correspond to
the separatrix trajectories of the potential V, i.e., the tra-
jectories in the plane (u,v) that connect pairs of saddle
points or maxima. The separatrices that connect oppo-
site maxima correspond naturally to the circularly polar-
ized NLS dark solitons. Setting v =0 and u =0 in Egs.
(12a) and (12b), respectively, we find

u =V?2B/(1—B)tanh(VBt), v=0
and (15)
u =0, v=V2B/(1—B)tanh(VBt) .

The separatrices that connect the pairs of opposite saddle
points lie on the bisecting lines ¥ ==+v and correspond to
the linearly polarized NLS dark solitons. Setting u =*v
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in Egs. (11) yields u =*v =V/Btanh(V/Br).

In Fig. 9 we show a contour plot of the potential
V(u,v) in the case where B =1. As in Sec. IV, for the
sake of simplicity we only consider the value f=1 [nor-
malization of Egs. (12) with respect to §]. The maxima of
V are then located in (x=%V3,0=0) and
(u =0,0 =%Vv'3). The thick lines on the axis in Fig. 9
connect opposite maxima and correspond to the circular-
ly polarized NLS dark solitons. The dashed lines which
connect opposite saddle points are the separatrices of the
linearly polarized dark solitons. From that simple
mechanical analog picture of the problem it is easy to see
that another type of solitary wave must exist that corre-
sponds to the separatrix trajectories that connect adja-
cent maxima of the potential. These trajectories can easi-
ly be calculated numerically using the shooting method
mentioned above for the study of the periodic solutions.
The dotted lines in Fig. 9 show the four separatrices that
connect the four adjacent maxima of V. The envelopes
u(t) and v (¢) of the separatrix of the first quadrant are
shown in Fig. 10. These solitary waves naturally corre-
spond to the PMI soliton, i.e., the limiting state of the
stationary periodic solutions studied in Sec. IV [see Figs.
6(d) and 7(d)].

In Fig. 11 we plot the envelopes u,v of the separatrix of
the second quadrant (u <0,v >0). We see that, contrary
to the waves of Fig. 10, these envelopes are not mirror
images of one another. We cannot therefore see them as
the limiting state of two identical but out-of-phase
periodic structures of opposite polarizations. In fact, it is
easy to show that these waves also constitute the soliton
associated with PMI. The only difference with the
analysis above is that one must now consider PMI of a
linearly polarized continuous wave which has a polariza-
tion orthogonal to that considered in Sec. II. In that sec-
tion we studied PMI of a linearly polarized cw field by as-
suming identical circular polarization components
E,=E_. Introducing the linear polarization com-
ponents E,=(E,+E_)/V2, and E,=(E,—E_)/
iV2, we see that we have implicitly considered a linear

-2 0 2U

FIG. 9. Contour plot of the potential ¥ in the (u,v) plane for
B =% and B=1. The solid and dashed lines show the separa-
trices of the circularly and linearly polarized NLS dark solitons,
respectively. The dotted lines connect the four adjacent maxi-

ma of the potential. They are the separatrices of the solitons as-
sociated with PMI.

u,v (a) I,q (b) 1
2l u V v———
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FIG. 10. (a) Circular polarization envelopes u (¢) and v (¢) of
the PMI soliton corresponding to the separatrix of the first qua-
drant (u,v >0) shown in Fig. 9. (b) Total intensity profile I(¢)
and ellipticity degree g () of the PMI soliton [q is the ratio be-
tween the short and long axes of the polarization ellipse
q=(u—v)/(u+v)].

polarization parallel to the x axis. Since we only deal
here with isotropic Kerr media, this choice is obviously
arbitrary and we could have considered for example a po-
larization parallel to the y axis. In that case we would
have had E_ =—E , and the analysis above would have
lead to the ansatz E, =+E,+V2E cos(Q¢) instead of
Eq. (3). It is then easy to see from the symmetry of Eqgs.
(1) that, with this new ansatz, the truncation procedure
leads to the same Hamiltonian model (6) and (7). The
fixed points of the Hamiltonian represent now counter-
rotating waves which exhibit identical periodic modula-
tion on background waves of opposite amplitudes. Clear-
ly, the limiting state of the corresponding stationary
periodic solutions is in this case the solitary wave shown
in Fig. 11. The solitary waves of the separatrices of the
third and fourth quadrants are equivalent to those of the
first and second quadrants, respectively, since they in-
volve a change of sign in both circular components.

In Figs. 10 and 11 we also plot the total intensity
profile I =u?+v? and the ellipticity degree g (ratio be-
tween the short and long axes of the polarization ellipse)
of the PMI soliton. The values ¢ ==*1 represent opposite
circular polarizations while ¢ =0 represents a linear po-
larization. Note that, since u and v are real functions, the
axes of the polarization ellipse retain the same orientation
across the entire localized structure. Because its intensity
profile exhibits a dip on a constant background, the PMI
soliton constitutes a vector solitary wave of the dark
type. Figures 10(b) and 11(b) show that the intensity dip
is accompanied by a variation of the ellipticity degree of

uy (a) (b)

2t A q

FIG. 11. (a) Circular polarization envelopes u (¢) and v (¢) of
the PMI soliton corresponding to the separatrix of the second
quadrant (# <O0,v >0) shown in Fig. 9. (b) Total intensity
profile I(¢) and ellipticity degree g (¢) of the PMI soliton [here
we have ¢ =(u +v)/(u —v)].
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FIG. 12. Illustration of the influence of the parameter B on
the PMI soliton. (a) B=0.1, (b) B=0.33, (c) B=0.75, (d)
B=0.95.

the field between two constant values. Notice that a cir-
cularly polarized wave is modulationally stable in the
normal-dispersion regime. We can then say that the PMI
soliton separates two semi-infinite domains of orthogonal
stable eigenpolarizations of the Kerr medium. From that
point of view and by analogy to the theory of fer-
romagnetism, the new soliton can be interpreted as a po-
larization domain wall (the atomic spin being replaced
here by the polarization of light). Note that this termi-
nology has already been used in nonlinear optics to quali-
fy the localized structure which may occur in two polar-
ized beams counterpropagating in a dispersionless Kerr
medium [37,38].

Let us now consider the influence of the parameter B
on the PMI solitons. It is easy to see from Eq. (13) that,
when B =0, the potential V has a circular symmetry and
no longer possesses maxima or saddle points. This means
that the existence and features of the PMI solitons direct-
ly depends on the tensor character of the Kerr nonlinear-
ity. Figure 12 illustrates the influence of B on the soliton.
We see that a decrease of B leads to an increase of the
soliton width and a decrease of the intensity dip. In the
limit B—0 the width tends to infinity and, in other
words, the soliton no longer exists. This result is in
agreement with the study of PMI of Sec. II in which we
showed that when B—0 the PMI gain and the corre-
sponding frequency tend to zero (i.e., the period of modu-
lation becomes infinite). In the other limit, as B tends to
unity the soliton width decreases while its intensity
minimum approaches zero.

VI. CONCLUSIONS

In this paper we studied modulational instability and
the periodic solutions of the incoherently coupled NLS
equations which govern light propagation in isotropic
Kerr materials. We derived from these equations a

simplified approximate Hamiltonian model which was
shown to provide a good qualitative picture of the dy-
namics of PMI and periodic solutions. In particular, this
model predicts a recurrent behavior analogous to that ob-
served in the NLS equation (Fermi-Pasta-Ulam re-
currence). Another important prediction of the Hamil-
tonian model is the existence of stationary periodic solu-
tions in the form of identical but out-of-phase periodic
and real envelopes in the two circular polarization com-
ponents. This result has been confirmed by the numerical
study of the exact stationary periodic solutions of the
coupled NLS equations. We showed numerically that the
family of stationary periodic solutions tends to a
solitary-wave solution as the period is increased to
infinity. This solitary wave was thus identified as the soli-
ton associated with PMI in the normal dispersion regime.
A mechanical analog approach to the problem allowed us
to perform a detailed analysis of this new fundamental
nonlinear wave of isotropic Kerr materials. We showed
that the PMI soliton constitutes a new type of vector
dark soliton which can be viewed as a polarization
domain wall.

From a more general point of view, our analysis
demonstrates the existence, conjectured by Agrawal in
1987 [10], of the soliton associated with modulational in-
stability induced by cross-phase-modulation in the nor-
mal dispersion regime. For the sake of simplicity we re-
stricted the problem to that of copropagating polarized
laser pulses for which XPM is related to the tensor char-
acter of the Kerr nonlinearity. However, XPM being a
general feature characteristic of the simultaneous propa-
gation of two waves belonging to different optical modes,
our analysis is liable to apply to other physical situations.
In particular, as mentioned in Sec. II, our results can be
directly adapted to the spatial domain for the problem of
transverse modulational instability and pattern formation
in the profile of two-dimensional polarized beams in de-
focusing Kerr media. We believe that an extension of the
present theory to the more general case of birefringent
Kerr materials is possible. In that case the PMI soliton
would appear as a localized structure separating domains
of elliptical polarizations which constitute the nonlinear
eigenpolarizations of the material. The experimental ob-
servation of the soliton associated with modulational in-
stability in the normal-dispersion regime would be of
great interest since it constitutes a new fundamental
phenomenon of nonlinear wave dynamics.
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